
 

 

 
Abstract 

 
We present a robust defense model in image 

classification against any kind of adversarial attack. Our 
model uses a U-Net structure superinduced on the 
Autoencoder followed by the general ResNet architecture. 
By fusing the identity mapping between the encoder and 
decoder, contextual information reserved from the fine-
grained model and coarse model from the decoder makes 
an entangled robust architecture to deal with ambiguous 
images. We find that elaborately amalgamating those 
structures can make the model capable of coping with 
various adversarial attacks by proposing U-Autoencoder 
Network. Moreover, this model is also talented in 
identifying real-world images contaminated by noise or 
even feculent images with low resolution. 

 

1. Introduction 
We address the problem of defending against data 

poisoning to drop the performance of the deep learning 
model, commonly referred to as adversarial attacks. [6] 

The adversarial attacks work by adding unrecognizable 
minor perturbations in the input data, causing results in 
completely different predictions. This performance 
degradation is fatal in fields directly related to human life, 
such as autonomous driving and medical imaging based on 
deep learning. Adversarial attacks are the biggest factor 
that shakes the trust of deep learning thus, devising ways 
to overcome those attacks is one of the most significant 
problems deep learning faces. 

Currently, methods to defend against such adversarial 
attacks are being researched and ways to modify training 
methods, or input data are mainly proposed, noting the 
characteristics of attacks that poison data. Brute-force 
adversarial training by Zhang et al. [1] takes contaminated 
inputs to learn and Data compression by Jia et al. [2] uses 
classical machine learning methods like PCA to initially 
compress the data, and then train the model. 

However, deviating from the mathematically designed 
model of deep learning and training with new methods that  
  

Figure 1: Our U-Autoender performs better than naïve ResNet-
18 models and Autoencoders on adversarial attacks. The Finger 
dataset [27] is used as a benchmark, and the attacks are Gaussian 
Noise, FGSM, and PGD from left to right. 
 
avoid accumulated knowledge is often applied only to 
specific datasets or lose their versatility.  

While other researches focus on manipulating the input 
of the training data. Luo et al. [3] have demonstrated 
foveation on CNN to modify the domain on convolution to 
dodge attacking area on the image and Xie et al. [4] 
implement random resizing on adversarial examples to 
avoid the effect of perturbation attacks on the inputs.  

Nevertheless, these methods of transforming input not 
only reduce the expressive power of latent features of input 
data but also significantly cut off the expressive power of 
deep learning in response to random attacks.  

The above methods suggest a model whose performance 
has been degraded by avoiding adversarial attacks. On the 
contrary, methods that can respond to attacks while 
maintaining performance by strengthening the robustness 
of the model itself have been recently studied. Gu et al. [5] 
give rise to the smoothness penalty on contractive networks 
for supplementation purposes. Similarly, Vivek et al. [8] 
suggested gradient regularization to the input to penalize 
variation on perturbed pixels in training.  

While those contractive networks have successfully 
introduced autoencoder networks before the deep neural 
network to deal with L-BGFS-based attacks [10], we find 
limitations in two aspects: first, the research could not go 
further to handle other kinds of perturbation; second, 
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without adjusting penalties, there is no clear reason why 
the model becomes robust. 

In this work, we propose a new model to practically 
derive the robustness of the model and apprehend why this 
model is regarded as powerful. 

Context We utilize enhancing the robustness of the 
encoder network over a variety of image classification 
datasets. This model even applies to some delicately data-
driven trained adversarial attacks, which makes it difficult 
to train in naïve ways. Our U-Autoencoder model has 
versatile utility on any method of attack. 

Convergence We suggest a way to enhance prediction 
accuracy in image classification by using the U-
Autoencoder model. As image classification tasks are 
widely used in real-world problems, we propose a network 
structure for efficiently resolving the currently facing 
problems with no additional time complexities. 

Contribution In summary, in this work, we propose a 
robust and efficient image classification model to not only 
cope with various adversarial attacks but also denoising 
corrupted images. This is possible due to using an 
autoencoder to figure out the latent variables of the image 
while identifying the original image from the attack. Our 
method is relatively robust and, therefore, more accurate 
than the state-of-the-art methods as illustrated in Figure 1. 

2. Related Work 
Autoencoder is the representative state-of-the-art method 
in deep learning-based adversarial defense models. So let 
us compare it and analyze it with our proposed method. 

2.1. Convolutional Network for Image 
Classification 

Convolutional Neural Network(CNN) in image 
classification has made tremendous progress every year 
since AlexNet challenged other classical computer vision 
tasks with this structure in ImageNet Classification [11, 12] 
in 2012. With an 8-Layer CNN structure, this model 
became state-of-the-art for a couple of years. 

Szegedy et al. [13] proposed GoogLeNet and Simonyan 
et al. [14] gave rise to VGGNet that have far deeper CNN 
structures compared to AlexNet. They got the first and 
second ranks on ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) 2014.  

After a year, He et al. [15] suggested ResNet which took 
the state-of-the-art from GoogLeNet. They used identity 
mapping on the deep CNN structure which was previously 
problematic due to gradient vanishing and other 
miscellaneous reasons. This ResNet architecture was 
considered the completion of the CNN-based Image 
Classification, which remained in a state-of-the-art 
position for quite a long time before the computationally 
extreme pre-trained model, Transformer, took control of 
image classification. 

 
Figure 2: Our Network Structure. We diminish the spaial 
dimension of the input data using encoder layers (convolutional 
and non-linearlity). Then reconstruct the data by expanding the 
shrunk image that contains latent variables with decoder layers. 
The necessary point is we implement identity mapping. 

2.2. Autoencoder 
Autoencoder is one of the exciting unsupervised 

learning methods which is considered the deep neural 
network version of Principle Component Analysis(PCA), 
mainly used in machine learning to reduce dimensionality 
[16, 17]. This structure is divided into two parts: an encoder 
and a decoder, in which the encoder reduces the dimension 
of the data and the decoder extends the reduced data again.  

Later, Vincent et al. and Nishad [19, 20] found that this 
structure can be useful in denoising images. This is also 
good at the compression of data as they can store the coarse 
representation of the original data. Besides, It is also 
applied in clustering algorithms that classify data without 
labels which was previously an area of machine learning 
tasks [18]. 

Although this autoencoder model performs great in 
various fields including machine learning, there are weak 
points to the autoencoders. It only stores the potential 
distribution derived from the input, and cannot control this 
variable, which is inevitable because it is a deep neural 
network designed for dimensionality reduction. 

 

2.3. U-Net 
U-Net is a network that is showing very remarkable 

performance through simple ideas in deep learning. This 
structure, designed primarily to preserve the positional 
information of an image between decreasing coarse images 
in image segmentation tasks [7], is repeatedly used in 
dimension reduction stages, similar to ResNet. 

 Previously, deep learning models in image 
classification could be used to confirm the presence of an 
object, but due to the reduced dimensional nature of CNNs, 
their location information was difficult to preserve. 
However, the creation of this model has brought innovative 
discoveries in bio-imaging technology and has established 



 

 

itself as the most important model in reconstruction and 
various segmentation fields such as CT and MRI [21]. 

 

3. Proposed Method 

3.1. Proposed Network 
For the purpose of defending against adversarial attacks, 

we use autoencoders with U-Net inspired by Hinton and 
Ronneberger [7, 16]. The configuration is emphasized in 
Figure 2. We use d layers for the encoder and the same 
number of layers in the decoder. We also implemented 
identity mapping from the encoder layers to the decoder 
layers. 

For example, for the input image size 32 x 32, we first 
shrink the special dimension of the image into 8 x 8, thus 
we can obtain some latent vectors of the input image. Then 
we use decoder layers to extend the spatial dimensions. 
With the U-Net-based identity mapping structure, the 
output image is the sum of the encoder input and the 
decoder output. 

3.2. Training 

Now we describe the objective of the training method to 
maintain the robustness of the U-Autoencoder model. As 
the purpose of our network is to enhance the robustness of 
the network model itself, we only input the original image 
into the model illustrated in Figure 3. Without using the 
corrupted samples of adversarial attack, this model is fairly 
robust to pull over the corruption stained with the original 
images. 

Identity AE Learning In a naïve autoencoder, the input 
image merely goes through the encoder and decoder 
network, but it is widely known that this structure is prone 
to adversarial attacks but L-BGFS type perturbation [10]. 
Rather, we superinduce identity mapping between one 
layer of the encoder to the output of equal spatial size of 
the decoder with the identity mapping. We refer to this 
original structure as Identity AE Learning; AE trivially 
stands for the AutoEncoder. 

Given a training dataset {x(i), y(i)}Ni=1 our goal is to learn 
the original image that can deal with corrupted images. The 
output of the autoencoder is described as 𝐷!	(𝐸"	(𝑿𝒊)) 
where 𝐷! and 𝐸" refers to the network of the decoder and 
encoder respectively. Our identity autoencoder in the 
model can be referred to as 𝐷!,%	(𝐸",%	'𝑿𝒊,𝒌!( 	+ 𝑿𝒊,𝒌'	). 
The sub k identifies the order of the layer of each layer, i.e. 
the result in k-th encoder layer is identically exerted into 
the k-th decoder. This account takes for granted only when 
the spatial structure between the encoder and the decoder 
are symmetrical. 

Since the deep learning model optimizes the variable of 
the model through the loss function, the corresponding loss  

 

 
Figure 3: Training Method for U-Autoencoder Network 
Structure. We first train the original image through the network. 
Then, we give an adversarial attack to the image which outputs a 
corrupted image. Our network is robust enough to clean up the 
filthy perturb and identify the virtually original image. 
  
 
function is also necessary when the structure of the model 
changes. In order to simply this change of loss function, let 
us put the naïve autoencoder loss as ∥ 𝑋( −𝐷!(𝐸"(𝑿𝒊)) ∥. 
This is because the purpose of autoencoder, especially 
decoder, is to reconstruct the original image even if it had 
been spatially destructed by the encoder. Then the identity 
autoencoder model gives the loss in a similar manner as 
∥ 𝑋( +𝐷!,%(𝑋(,%!) 	− 𝐷!, 𝑘(𝐸",%'𝑿𝒊,𝒌'( + 𝑋(,%') ∥. It see- 
ms a bit complicated at a glance, however the implantation 
is pytorch is rather simple. 
 
Adversarial Attacks To clarify this model works good on 
the adversarial attacks, we contaminate the image or 
launched an adversarial attack by applying three 
perturbation: Gaussian Noise, FGSM, and PGD.  
 Gaussian noise is a very basic noise covered in electrical 
engineering [22] as they turn up when transmitting the 
image. When we receive such images through a network 
that requires signal processing, it is difficult to avoid the 
noise from being attached to the data. This is the most 
frequently generated noise when a camera or a data 
collector, such as a road view cam, uses it to transmit and 
receive or compress data, and the method of removing 
Gaussian noise is the most impactful study in engineering. 
 In fact, a naïve autoencoder has a not-bad performance 
of denoising against gaussian noise, however, it has an 
even bad prediction ability when the dataset is not a 
continuous image. An example of an un-continuous dataset 
is the ‘Traffic-sign’ dataset we used as a benchmark, which 



 

 

we will discuss later. 
Unlike the naturally made noise, there are also data-

driven noises to purposely attack such neural networks.  
Goodfellow et al. Fast Gradient Sign Method (FGSM) 
suggested by Goodfellow et al. [6] to disturb neural 
networks being too linear. It is, namely, designed to give a 
pinch of the ‘linear’ network that is too weak against the 
attack. 

A more powerful attack mechanism Projected Gradient 
Descent (PGD) is suggested by Madry et al. [23] that 
implements n-steps of applied FSGM. Currently, this 
method is known as a universal first-order adversary, and 
tons of research utilizes it as a baseline attack mechanism.  

We show that our proposed model is robust compared to 
existing structures for the three representative methods of 
the above-mentioned adversarial attacks. 

Datasets We used three 32 x 32 x 3 light-weighted 
datasets as a benchmark of the model. But, to our 
knowledge, the spatial scale of the image does not affect 
the performance much because it is known that any simple 
model structure can be expanded to large size model as 
input-256-ResNet is modified to input-28-ResNet to apply 
in the MNIST dataset, and vice versa. In the same manner, 
ResNet is applied to 4 K-resolution images with SRCNN 
[24]. Therefore, although we used a light-sized dataset, the 
overall structure is simple and thus can be applied to large 
datasets without complication. 

Each of the three datasets is Typeface MNIST(TMNIST) 
provided by Magre et al. [9, 25], the Fingers dataset offered 
by Davis et al. [26, 27], and the Traffic-sign prediction 
dataset [28]. 

Inference In contrast to the training process using only 
the original image, the inference process measures the 
performance of the above adversarial attack on the 
contaminated data applied to the original image. As shown 
in Figure 3, the prediction accuracy is measured through 
whether the image subjected to adversarial attacks on three 
channels of RGB in the original image is received as input 
and classified with the same value compared with the 
labels. 

Code Description Our code implementation is available 
in ItDL_2022_Project_2.zip file submitted via SNU eTL. 

We used Add_Gaussian_Noise function to provide 
gaussian noise, fgsm function for the FGSM adversarial 
attack, and pgd_attack function for PGD attacks. 

 ResNet-18 network for the workflow using basicblock 
structure for 18 layers. UEncoder function is implemented 
as a total of 4 layers of an autoencoder, and also the 
important identity mapping. 

We then check the visualization by printing images in 
the dataset to see if the proper noise or perturbation is 
added to the inference image and finally measure the 
accuracy. We also saved the pre-trained model and datasets 
we used, so the reviewers can easily check whether our 
overall training and inference process is done properly. 

Models ResNet Autoencoder 
+ ResNet 

U-Autoencoder 
+ ResNet(ours) 

Without Noise 99.35 99.26 99.21 

Gaussian (𝜎 = 0.225) 74.28 87.04 91.44 

FGSM (𝜀 = 0.2) 26.39 92.53 93.80 

PGD (𝜌= 0.1) 0.00 98.14 98.26 

(a) Prediction accuracy in TMNIST dataset 
 

Models ResNet Autoencoder 
+ ResNet 

U-Autoencoder 
+ ResNet(ours) 

Without Noise 100 

Gaussian (𝜎 = 0.125) 60.19 18.78 98.53 

FGSM (𝜀 = 0.1) 13.56 39.14 94.97 

PGD (𝜌= 0.1) 0.00 90.11 97.78 

(b) Prediction accuracy in Finger dataset 
 

Models ResNet Autoencoder 
+ ResNet 

U-Autoencoder 
+ ResNet(ours) 

Without Noise 70.65 96.43 96.53 

Gaussian (𝜎=0.06) 85.86 89.13 91.17 

FGSM (𝜀 = 0.01) 41.04 88.67 91.83 

PGD (𝜌= 0.1) 0.00 60.85 67.99 

(c) Prediction accuracy in Traffic-sign dataset 
 

Table 1: Performance of U-Autoencoder network compared to 
naïve ResNet architecture and autoencoder in terms of prediction 
accuracy in image classification. 
 

4. Experimental Results 
ResNet perfectly classifies noise-free images, but its 

performance drops to 60% in classifying images containing 
Gaussian noise, and it rarely classifies data when data-
driven attacks such as FSGM and PGD are applied. While 
Autoencoder has considerably more ability to defend 
against attacks than naïve ResNet but shows far less 
performance to apply to the real-world problem.  

Our proposal U-Autoencoder model has a compliant 
defense performance of both Gaussian noise, FGSM, and 
PGD, in contrast to existing models' inability to cope with 
attacks. Even in the case of the Fingers dataset, where the 
performance of the autoencoder is rather poor, our model 
complements its weakness very well and shows 
performance in the 90% range. 



 

 

5. Conclusion 
In this work, we presented a robust defense model 

against adversarial attacks with a U-Net structure attached 
to the autoencoder following the ResNet network. We have 
demonstrated that our proposed model outperforms the 
existing methods in image classification problems by a 
large gap in benchmark performances. The model is robust 
against not only adversarial attacks but also Gaussian 
noises likely to face in the real world. We believe our 
approach is ad hoc and applicable to other image processes 
using a neural network that needs to deal with noises and 
adversarial attacks. 
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