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1 Problem Formulation

Recommendation systems have achieved widespread adoption in real-world applications. However,
traditional collaborative filtering and content-based filtering methods rely on static models learned
from training data and may not be suitable for dynamically changing environments with constantly
changing users and items [1]. In order to address this issue, we propose a multi-modal contextual
bandit algorithm that can adapt to dynamically changing environments, while also leveraging high-
quality contextual information through multi-modal learning techniques. By combining these two
approaches, we aim to develop a more effective and efficient recommendation system that can keep
up with the constantly evolving nature of real-world applications.

2 Background and Related Work

Recommendation Systems Traditional recommendation systems have relied on non-Reinforcement
Learning (RL) algorithms, which suffer from limitations such as poor generalization to new users
and items, and inability to handle cold-start scenarios [1, 2]. Recent research has proposed RL-based
Contextual Bandit Recommendation that can learn from user interactions and adapt to dynamic
environments to personalize news article recommendations [3]. However, these approaches typically
rely on single-modality inputs on textual features, which may limit their ability to capture the
complexity of item attributes and user preferences. In this paper, we seek to address this limitation
by incorporating multi-modal data, such as video and text, to enhance the quality of user and item
representations.

Multi-modal Learning With the availability of large multi-modal datasets and powerful com-
putational resources, multi-modal learning has become a popular approach for solving complex
machine learning problems. By integrating information from various modalities, including vision,
text, video, and audio, recent research has demonstrated significant improvements in downstream
task performance. For instance, the CLIP, VATT, and VilBERT ([4, 5, 6]) models have shown innova-
tive performance in tasks such as image-text retrieval, visual question answering, and multi-modal
classification. These advancements highlight the potential for multi-modal contextual bandit models
to leverage diverse sources of information to improve recommendation performance.

3 Methods

Our main objective is to leverage the full potential of deep representations of multimodal contextual
information. The overall architecture is visually illustrated in Figure 2, and the exploration framework
is demonstrated in Algorithm 1. This framework consists of two key modules: Context-specific
Encoders (Section 3.2) illustrated in Figure 1, and Contextual Bandit Policy (Section 3.3).
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Figure 1: Context-specific Encoders To generate the contexts, we leverage the multi-modal features
(e.g. video, text) and apply distinct fusion methods to both user and item embeddings.

Figure 2: Multi-modal contextual bandits for movies recommendation We demonstrate the
NeuralUCB algorithm[7] by leveraging context features derived from user and item em-
beddings.

3.1 Exploration Framework

Our framework is built upon the general bandit problem formulation. In this setup, the recommender
system acts as an agent, selecting items (referred to as arms) based on user and item embeddings
(the context). Using a policy, such as a greedy approach, the agent recommends items to the user.
Feedback on user interaction is received, and the objective is to maximize cumulative rewards. The
framework aims to achieve this goal by optimizing the policy over iterations. The specific procedures
are outlined in Algorithm 1.

3.2 Context-specific Encoders

We apply distinct encoder modules to generate item and user embeddings, which collectively form
the context in our framework. The item encoder leverages the visual and textual information of items,
while the user encoder learns representations based on the items that users have previously watched.
This approach allows us to effectively capture and integrate item-specific and user-specific details
within the context.

Item Encoder consists of separate frozen modules for visual and textual representations. To encode
the visual information, we employ a visual encoder that takes a video with a total of F frames as
input. For each video, we randomly select F consecutive frames from the entire set. Then, we utilize
a pre-trained Vision Transformer(ViT) [8], which is a transformer-based image encoder, to generate

2



embeddings for each frame. We compute the average mean of the frame embeddings, resulting in the
final visual representation for the video denoted as ijvideo ∈ Rd.

For the textual encoder, we employ a pre-trained Bidirectional Encoder Representations from Trans-
formers(BERT) [9], which is a transformer-based text encoder. To process the textual information,
we append a special [CLS] token to a sequence of W words for each item. The extended sequence is
used as the input for the textual encoder. The textual encoder contextualizes the word embeddings
within the entire text, and we extract the output embedding corresponding to the [CLS] token as the
final textual representation denoted as ijtext ∈ Rd.

In order to obtain the ultimate representation for each item, we experiment with two fusion functions.
The first function involves a straightforward addition operation, where ij is obtained by adding ijvideo

and ijtext . The second function utilizes concatenation, where ij is obtained by combining ijvideo and
ijtext using the concatenation operation.

User Encoder In this study, we investigate the generation of user representations based on a
set of item embeddings, denoted as Xk. This set, representing the collection of item embeddings
corresponding to the items observed by user ut, is defined as Xk = x1, x2, ..., xk.

We explored three distinct operations to derive the user representation. Firstly, we employ the
averaging operation, where the item embeddings in Xk are averaged to obtain the representation.
Secondly, we utilize the last item embedding in Xk to capture the user’s most recent preference.
Lastly, we examine the direct use of the sequence Xk without applying any fusion function or
transformation.

Context Encoder generates final context features by concatenating the item and user embeddings
made from item encoder (Sec. 3.2) and user encoder (Sec. 3.2)

It is worth noting that when utilizing the direct sequence of items Xt for user representation, an
attention operation is employed to contextualize item embeddings with user information. In this
operation, the item feature of the arm is used as the query, while the item features within Xt are used
as the key and value.

PCA is employed to decrease the dimensionality of item and user vectors, considering the significant
memory and computational resources required for computing the inverse matrix, as explained in
section 3.3. Subsequently, we utilized a previously established approach[3] for dimensionality
reduction by performing K-Means clustering on the item features derived from the reduced space
obtained through PCA. This clustering process grouped the items into N clusters. To determine
the membership of each user within these N clusters, we calculated the Euclidean distance and
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applied a softmax function, ensuring that the sum of distances for each user vector equates to 1. This
resulted in the reduction of user vectors to N dimensions, with each dimension corresponding to the
membership of the respective group. The selection of N, which represents the number of clusters, is a
hyperparameter.

3.3 Multi-modal Contextual Bandit

Following [7], we adopt Algorithm 1, NeuralUCB, as our model for multi-modal contextual bandits.
It utilizes neural networks to ensure generalization and efficient exploration. User and item features
extracted from each encoder are used to approximate the reward function using MLPs. Finally, we
perform parameter updates through the neural network. This approach is expected to be effective in
training the model with contextual information. However, it also requires significant computational
cost due to the computation of matrix inverses. Therefore, it is crucial to understand the characteristics
of the model and find agile solutions to tackle these challenges.

4 Experiments

4.1 Datasets

We use a popular movie recommendation dataset for our experiments: MovieLens 25M [10]. We
choose the movie domain because it provides rich contextual information, such as trailer videos,
textual summaries, and metadata such as genre and actors. This allows us to conduct extensive
experiments to verify our model architecture and assess the impact of context features on performance.

To enhance the MovieLens dataset, we have made significant progress in collecting additional content
data. Given that the original dataset provides only the metadata, such as genre, we take the following
steps to gather visual and textual information of the items.

For visual contents, we use movie trailers provided by MovieLens [11] and MovieNet2, since the full
videos are publicly unavailable for most movies due to copyright. From each video, frames of size
224 × 224 are sampled at 2 fps. We drop the first and last 10% of the sampled frames, since they
often include age rating screen or ending credits. The average length of the trailers is 137 seconds, so
we get around 220 frames per video.

For text contents, we use movie synopsis collected from IMDB3 for MovieLens. These synopses are
2–3 sentences that summarize the movie overview. The sentences are first tokenized at word level
with the maximum length of 512, using uncased BERTBASE tokenizer [9] with |V | = 30, 522. The
average number of tokens in text contents is 54.7.

4.2 Evaluation Method

To evaluate the performance of our proposed bandit algorithm π for arm selection, we use offline
data collected previously using a different policy. Particularly, to mitigate selection bias and improve
the simulator when learning from logged data, we employ a widely-used approach for off-policy
evaluation of bandit algorithms, known as the Intermediate Bias Mitigation Step via the Inverse
Propensity Score (IPS) simulator [12], following [2]. This approach involves re-weighting the training
samples using the inverse propensity score. The IPS is learned from the logged data using logistic
regression. To convert predicted scores(ŷ) from the simulator into binary rewards {0, 1}, we select a
threshold that maximizes the f-score on a validation dataset.

4.3 Metrics

We divide the dataset into train and test data for fair evaluation. To measure the performance, we
employ a widely used metric, click through rate (CTR) on the test dataset. We calculate CTR for each
user ui as CTRui

= 1
T

∑T
τ=1 1{rτui

= 1}, where τ represents the number of trials. rτui
represents the

simulator’s reward of the recommended item for user ui at trial τ . To assess the overall performance
of bandits policies, we consider the cumulative CTR over all users in test dataset

∑Utest
i=1 CTRui

.

2https://movienet.github.io/
3https://www.imdb.com/
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5 Results
Table 1: Comparison of context-specific encoders for different feature dimension reduction methods

on MovieLens 25M. (CTR)
Item Encoder PCA (components = 4) Clustering (clusters = 8)

User Encoder-Avg User Encoder-Last User Encoder-Seq User Encoder-Avg User Encoder-Last User Encoder-Seq

Genre 11.1% 11.36% 10.45% 10.65% 11.4% 10.45%
Sum 11.23% 11.4% 10% 10.7% 9.75% 10.45%
Concat 11.17% 11.17% 3.6% 10.35% 9.8% 9.75%
Image 10.1% 11.09% 9.7% 10.1% 9.95% 10.55%
Text 10.69% 11.32% 3.75% 9.4% 11.2% 9.9%

Table 1 reports the performance of our approach on the dataset MovieLens 25M. We analyze
the impact of feature dimension reduction methods and context-specific encoders on performance.
Additionally, we compare our multi-modal context creation method with unimodal approaches (i.e.
image or text) as well as existing simple categorical (i.e. genre).

Regarding feature dimension reduction methods, the overall results demonstrate that the PCA method
outperforms the clustering method. This suggests that the PCA method is more suitable for identifying
the most important components and creating optimal combinations for the new embeddings in the
recommendation task.

When comparing different user encoders with PCA method, the User Encoder-Last achieves the
highest performance, suggesting that the most recent item watched by the user is a crucial factor in
representing user preferences. For the clustering method, the highest performance varies depending
on the item encoder, indicating the consistency and quality of features obtained through the PCA
method. The Item Encoder-Sum generally performs well with PCA, while categorical data such as
genre shows comparable performance. This highlights the effectiveness of human-labeled data for
item features. However, the quality of multimodal features demonstrates that using only item data is
sufficient to generate high-quality context features.

In terms of context creation, when using PCA method for better contexts, multi-modal context
creation method (i.e. sum or concat) outperforms the use of unimodal information (i.e. image or text).
This shows the importance of leveraging multiple modalities and considering a richer set of features
for context creation in recommendation systems.

6 Discussion

Figure 3: Regret analysis of different reward functions

Our methods demonstrate superior performance compared to the baseline method; however, we
encountered instability during the algorithm training process. This suggests that our method did not
operate optimally due to a lack of an ideal environment. Effective performance of the neural UCB
algorithm relies on high-quality context features that accurately represent items and users, as well
as a reward function learnable by the neural network. Stable convergence of total regret is achieved
when using easily learnable linear or quadratic functions to represent the relationship between context
features and rewards. In contrast, our method fails to converge, indicating potential issues with the
quality of the context features or the reward function provided by the simulator, as depicted in Figure
3.

In conclusion, our research contributes to the exploration of multimodal inputs in contextual bandit
problems. However, stable model training proved challenging. Future work could involve investi-
gating advanced feature utilization, employing sophisticated neural networks instead of MLPs for
better reward function approximation, and modifying the reward function using methods with less
bias compared to the simulator.
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