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Abstract

Vision-Language pre-trained models have demonstrated
remarkable performance in various downstream tasks.
However, previous research has predominantly emphasized
achieving high performance without conducting compre-
hensive analyses of the factors contributing to their success
or identifying potential limitations. This research aims to
bridge this gap by conducting a series of experiments to
evaluate the feasibility of the state-of-the-art model. Firstly,
we investigate the relative importance of vision-text align-
ment which has been infeasible by previous approaches.
Then, we aim to identify any weaknesses including colors
and positional skew within the model that may be attributed
to factors originating from the pre-trained network or pro-
cedures employed. Through these experiments, we intend
to shed light on the underlying reasons behind the models’
success and uncover any limitations they may possess.

1. Introduction
In recent years, the development of Vision-Language

multi-modal models has witnessed significant progress, rev-
olutionizing various fields such as image captioning, visual
question answering, and image-text retrieval. These mod-
els [4, 11, 9, 16, 7, 6], by combining visual and textual in-
formation, have demonstrated remarkable performance in
understanding and generating content that bridges the gap
between vision and language domains.

Despite the significant progress and successes achieved
by Vision-Language multi-modal models, recent research
has raised concerns regarding their limitations and the need
for a deeper understanding of their inner workings. Many of
these models can be regarded as ”black boxes” where their
impressive performance is observed, but the underlying rea-
sons remain elusive. Researcher have started to question
whether the models are truly comprehending the semantic
connections between vision and language or if they are re-
lying on superficial correlations.

Figure 1. Our surrogate vision-language importance comparison
analysis comparing blocked image against the non-blocked image
using ALBEF model. (a) Vision Information with contextual hint,
(b) Identical vision information without contextual hint

To address these concerns, several studies have delved
into investigating the characteristics of these models and
the nature of their cross-modal influence. For example, [5]
explored the question of whether Vision-Language mod-
els primarily excel in Vision-for-Language tasks generat-
ing language descriptions for given images or if they can
equally perform Language-for-Vision tasks inferring visual
concepts from textual descriptions. Besides, [1] proposed a
suite visual-language understanding to investigate whether
vision and language-based pretraining can enhance perfor-
mance on text-only tasks that involve implicit visual reason-
ing. These findings shed light on the biases and limitations
present in these models, emphasizing the need for a more
comprehensive analysis.

In this paper, we aim to contribute to the existing body of
research by conducting an investigation into the feasibility
of Vision-Language multi-modal model. We recognize the
importance of understanding the underlying reasons behind
the success of these models and identifying any potential
limitations they may have. To achieve this, we have de-
signed a series of experiments that aim to explore two criti-
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cal aspects: the relative importance of vision-text alignment
and the identification of weak points within the state-of-the-
art model.

The contribution of this paper is summarized as follows:

• We conduct a Vision-Language Importance Compar-
ison analysis. With surrogate evaluation of the relative
importance between vision and text information in such
model, we gain insights into the extent to which accurate
alignment of visual and textual information contributes to
overall performance.

• We investigate the presence of color bias within a
Vision-Language model. We discover that these models
often exhibit an overemphasis on color information when
processing visual inputs. This bias can potentially lead
to skewed interpretations and reliance on superficial visual
cues, rather than capturing the semantic essence of the con-
tent.

• We examine the existence of positional bias in a Vision-
Language model. Positional bias refers to the model’s sen-
sitivity to the spatial arrangement of visual elements or tex-
tual tokens. Through our experiments, we identify instances
where the models exhibit preferential treatment towards cer-
tain positions, leading to disproportionate attention alloca-
tion or inconsistent performance across different regions of
the input.

2. Backgorund and Related Works

2.1. Vision-Language Multi-modal models

ViT [4] made a significant breakthrough by applying
the Transformer architecture to image classification tasks.
The model divided images into patches and leveraged self-
attention mechanisms to capture interdependencies between
visual elements. This approach surpassed the previous con-
volutional neural network (CNN) based methods on sev-
eral image recognition benchmarks, highlighting the po-
tential of utilizing transformer-based architectures in vision
tasks. Similarly, CLIP [11] adopted a contrasting objective
to jointly train a vision encoder and a language encoder.
This approach allowed the model to learn meaningful rep-
resentations that could match images and their associated
textual descriptions.

In addition to the aforementioned models, other ap-
proaches have emerged in the field of Vision-Language
multi-modal models, further advancing the understanding
and reasoning capabilities across visual and textual modal-
ities. ViLBERT [9] utilizes co-attention mechanism to en-
able joint reasoning over visual and textual modalities and
LXMERT [16] uses pre-trained cross-modality models to
learn intermodal connections. These models, extending

upon the foundation laid by BERT [3], employ innova-
tive techniques to enable joint reasoning and capture inter-
modal connections.

Furthermore, [7] focuses on aligning language and vi-
sual features through the use of an adaptive attention mech-
anism. By effectively aligning these modalities, ALBEF
enhances its understanding and reasoning capabilities, re-
sulting in state-of-the-art performance on diverse tasks. An-
other notable approach [6], employs contextual modulation
to enhance the vision-language pre-training process. By
considering the interdependencies between visual and tex-
tual modalities, BLIP achieves improved performance on a
range of downstream tasks, including image classification
and visual question answering.

These models, along with the previously mentioned ex-
amples, collectively showcase the remarkable capability of
Vision-Language multi-modal models to comprehend and
reason over multi-modal inputs. By incorporating innova-
tive techniques and leveraging the strengths of pre-training
and attention mechanisms, these models have consistently
achieved state-of-the-art results on diverse benchmarks.

2.2. Feasibility Inspections

Explainable Methods plays a crucial role in understand-
ing the inner workings of multi-modal models, and one
of the most intuitive approaches to gain insights into their
functioning is through the utilization of saliency maps. [13]
involved measuring the gradient of the predicted class with
respect to the input image and generating a saliency map by
identifying spatial locations with large gradient magnitudes.
This method was further enhanced by [14, 15], resulting in
sharper saliency maps. These gradient-based saliency meth-
ods have demonstrated generalized performance on various
datasets.

Class Activation Mapping (CAM) [17] was a significant
advancement in generating coarse localization heatmaps. It
employed a global average pooling (GAP) layer to compute
gradients flowing into the final convolution layer, producing
a heatmap that highlights important regions. Grad-CAM
[12] extended CAM by eliminating the need for a GAP
layer, enabling the computation of fine-grained localization
heatmaps. Grad-CAM utilizes gradient information to gen-
erate visual explanations from deep networks, providing in-
sights into the model’s decision-making process.

Another approaches such as Integrated Gradients (IG)
[15], and Layer-wise Relevance Propagation (LRP) [2] have
also been employed to unravel the model’s interpretation of
images, shedding light on the decision-making process and
providing valuable insights into the model’s behavior.

Cross-modal Influence Addressing concerns regarding
the characteristics of Vision-Language multi-modal models
and their cross-modal influence, several studies have been
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Figure 2. Our investigation on the color bias in the ALBEF model with comparing original image against gray-scaled images. The MLM
scores for grayscaled images dramatically drops even though it has semantics unchanged.

conducted to explore these aspects comprehensively. MM-
SHAP (Multimodal Shapley) [10] has been introduced to
quantitatively evaluate the extent to which a multimodal
model utilizes individual modalities. It leverages Shap-
ley values to provide a performance-agnostic multimodality
score, offering a reliable measurement of the proportions
in which a multimodal model employs different modalities.
By applying MM-SHAP to various Vision-Language mod-
els across multiple tasks and datasets, insights into the de-
gree and direction of unimodal collapse where a unimodal
model achieves similar accuracy to a multimodal model
were obtained.

Additionally [5] delved into investigating whether
Vision-Language models predominantly excel in Vision-
for-Language tasks, or if they possess equal proficiency in
Language-for-Vision tasks, which involve inferring visual
concepts from textual descriptions. Besides, [1] proposed
a suite visual-language understanding tasks specifically de-
signed to investigate the impact of vision and language-
based pre-training on text-only tasks that involve implicit
visual reasoning.

However, the traditional vision-language ablation task
is not applicable to mainstream models like ALBEF and
BLIP because these models align vision and language to-
kens before fusion, unlike V-L cross-modal models such as
LXMERT. Therefore, we suggest an alternative method to
explain the influence of vision-language interactions. More-
over, existing models [4, 11, 9, 16] often prioritize achiev-
ing higher performance scores on specific evaluation sets,
overlooking other problematic aspects. They may rely on
shallow cues and fail to consider the deeper semantic mean-
ing of the input. To gain a more comprehensive understand-
ing of how these models work, we also investigate other is-

sues related to multi-modality, such as color and positional
information processing.

By delving into these aspects, we aim to uncover the nu-
ances and limitations of vision-Language multi-modal mod-
els, facilitating a deeper understanding of their workings
and paving the way for further improvements in the field
of multi-modal research.

3. Proposed Methods and Experiment Setup
To assess the feasibility and characteristics of the AL-

BEF model [7], which is currently considered the state-
of-the-art vision-language model, we conducted a series of
feasibility check experiments using a subset of 50 samples
from the COCO-Test dataset [8]. We employed a masked
language modeling (MLM) score, similar to BERT [3], to
examine the model’s contextual text-based token predic-
tions and gain insights into its fine-grained characteristics
and image text matching (ITM) score as a metric for repre-
senting vision-and-language information alignment.

In masked language modeling, let T̂ denote a masked
text, and pmsk(I, T̂ ) denote the model’s predicted proba-
bility for makes token. MLM minimizes a binary cross-
entropy loss.

Lmlm = E(I,T̂ )∼DH(ymsk, pmsk(I, T̂ )) (1)

Litm = E(I,T )∼DH(yitm, pitm(I, T )) (2)

For the image text matching, pitm(I, T )) denotes the pre-
dicted a two-class probability, where yitm is a 2-dimensional
one-hot vector representing the ground-truth label. These
notations and definitions are proposed in ALBEF [7] which
we adopted as our baseline model.
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4. Experiments

4.1. Vision-for-Language Diagnostic

In this experiment, we aimed to understand the influence
of vision-language information in the ALBEF model [7].
We compared the model’s performance when provided with
visual inputs (images) versus contextual hints (masked to-
kens) related to the images. Figure 1 examines the model’s
responses and predictions in these two scenarios, we sought
to assess the importance and effectiveness of visual cues in
driving the model’s language generation capabilities.

4.2. Color Information Comprehension

To investigate the ALBEF model’s understanding of
color information, we conducted experiments focusing on
information loss when presented with grayscale images. By
evaluating the model’s responses to grayscale inputs as Fig-
ure 2, we aimed to assess its ability to comprehend and
leverage color cues for various vision-language tasks. Ad-
ditionally, we detected instances of skewed-color detection,
where the model exhibited biases or imbalances in its inter-
pretation and utilization of color information.

4.3. Positional Information Comprehension

Understanding the ALBEF model’s comprehension of
positional information was another area of focus in our re-
search. We conducted experiments to assess the model’s
ability to understand and leverage locational information
within images. By examining its responses and predic-
tions related to the spatial arrangement of objects or tex-
tual tokens as Figure 3, we aimed to identify any instances
of skewed interpretations or inconsistencies in the model’s
handling of positional information, particularly when deal-
ing with reflected or mirrored images.

Through these proposed methods, we aimed to gain in-
sights into the feasibility and performance characteristics of
the ALBEF model. By investigating the influence of vision-
language information, comprehending color information,
and assessing positional information comprehension, we
aimed to identify strengths, weaknesses, biases, and limita-
tions within the model. These findings contribute to a more
comprehensive understanding of the ALBEF model and
pave the way for future advancements in vision-language
multi-modal models.

5. Results

Vision-Language Dominance The results presented in
Figure 1 provide clear evidence regarding the feasibility of
the model. Intuitively, it can be observed that the impor-
tance of vision information outweighs the significance of

Figure 3. Our investigation on positional skew in ALBEF model.
The MLM prediction score lies more reliability on the false label
for the symmetric mirror-image skew images

textual information. This is evident from the substantial
decrease in the surrogate ablation score when the images
are blocked and accompanied by hint captions, indicating
a collapse in performance. In contrast, the non-blocked im-
ages without textual hints exhibit minimal signs of collapse.
These findings highlight the dominant role of vision infor-
mation in driving the model’s performance, suggesting that
it heavily relies on visual cues for effective comprehension
and decision-making.

Color-Bias The results in Figure 2 of our analysis indi-
cate that when presented with grayscale images, there is a
significant loss of information in terms of the metric used,
despite the preservation of object semantics with only the
color component being removed. From this observation,
we can infer that the model exhibits an excessive fixation
on color information, placing a disproportionate emphasis
on it in its decision-making process. This finding suggests
that the model’s performance and decision outcomes might
be biased or overly reliant on color cues, potentially over-
shadowing other important visual features and leading to
imbalances in its overall comprehension and reasoning abil-
ities.

Positional Mirror Image Skew One notable observa-
tion is the presence of positional mirror-image skew in the
model’s performance. When presented with images featur-
ing symmetrical objects, such as humans with two hands,
and two legs, the model tends to struggle in accurately rec-
ognizing the position of these symmetrical elements. A
clear example of this can be seen in Figure 3, where a per-
son is depicted holding a ski in their left hand. However,
due to the image being captured from a mirrored perspec-
tive, the model erroneously identifies the object as being in
the right hand, leading to a false interpretation.

This finding suggests that the model encounters difficul-
ties in accurately understanding the positional information
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of symmetrical objects. It highlights a potential limitation in
the model’s ability to discern and interpret the correct spa-
tial orientation of such elements within an image. Further
investigations into this phenomenon can provide valuable
insights for improving the model’s positional understanding
and enhancing its overall performance in scenarios involv-
ing symmetrical objects or scenes.

6. Conclusions
The weaknesses observed in the model’s performance

on downstream tasks raise concerns regarding the potential
presence of pre-trained biases. To address these concerns
and further improve the model, future work should focus on
conducting a comprehensive investigation of the dataset to
identify and assess the existence of biases. This exploration
will contribute to a deeper understanding of the limitations
and challenges associated with the model’s training data.

Furthermore, efforts should be directed towards the de-
velopment of a more robust model that can effectively miti-
gate pre-trained biases. By enhancing the model’s ability to
handle biases, we can promote fair and unbiased decision-
making processes and improve the overall performance of
the vision-language multi-modal system.

In addition to these research directions, there may
be other avenues worth exploring to advance the field.
These could include investigating novel techniques for in-
terpretability and explainability in vision-language models,
exploring alternative training strategies, or exploring the po-
tential of transfer learning to address the identified limita-
tions.

By addressing the concerns related to biases and striving
for a more robust and unbiased model, we can unlock the
full potential of vision-language multi-modal models and
facilitate their deployment in a wide range of real-world ap-
plications.
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